

Routine whole genome sequencingbased cancer diagnostics for precision medicine and research

Prof dr Edwin Cuppen | Scientific director

e.cuppen@hartwigmedicalfoundation.nl linkedin.com/in/edwin-cuppen

4. genomDE-Symposium 2025 Genommedizin, July 10, 2025

| Europe is leading in national Clinical Cancer Genomics programs

Countries have very different health care systems

Government-driven national programs

UK: NHS/Genomics England

FR: 2025 France Genomic Medicine Plan

DK: Danish National Genome Center

DE: GenomDE

(EU: 1+M Genome Project)

Bottom-up, government funded

SE: Genomic Medicine Sweden

Bottom-up, philantropy

NL: Hartwig Medical Foundation

The learning care/innovation cycle – for better care

WGS can uncover a wealth of relevant information

To inform medical specialists on clinical actionability and relevance for cancer patients

Cancer drivers from genome-wide variant calling - small and structural variants - purity and ploidy

- bi-allelic, subclonal, driver vs passenger
- optimized for diagnostic cancer genes

Complex biomarkers

- DNA repair status (MSI, HRD)
- mutational signatures

Germline information

- cancer predisposition
- pharmacogenetics

HLA typing and neoepitopes - immunotherapy

vaccination

Hartwig WiGiTS: comprehensive, efficient and flexible data analysis

Multi-platform support

Fast, inexpensive &

runnable anywhere

Universal NGS Pipeline

Open source software

aws

(Stephan Watts, Oliver Hofmann, UniMelb)

Panel, WES, WGS Paired and tumor-only Tissue (FF, FFPE) and cfDNA

Longitudinal patient analysis

Multimodal (DNA, RNA, ctDNA) Disease monitoring

> https://github.com/hartwigmedical/ https://nf-co.re/oncoanalyser/

Fully automated (draft) patient report generation

Complex biomarkers

Pharmacogenetics Germline mutations **HLA** typing

Demonstrating clinical validity and utility

Clinical Implementation Study

- feasibility: TAT of 9 days, success rate 70%
- validity: >99.6% concordance SOC
- utility: additional findings in 60%

Journal of Pathology

J Pathol October 2022; 258: 179–188
Published online 3 August 2022 in Wiley Online Library
(wileyonlinelibrary.com) DOI: 10.1002/path.5988

ORIGINAL ARTICLE

Feasibility of whole-genome sequencing-based tumor diagnostics in routine pathology practice

Kris G Samsom^{1*}, Luuk J Schipper^{2,3†}, Paul Roepman⁴, Linda JW Bosch¹, Ferry Lalezari⁵, Elisabeth G Klompenhouwer⁵, Adrianus J de Langen⁶, Tineke E Buffart⁷, Immy Riethorst⁴, Lieke Schoenmaker⁴, Daoin Schout¹, Vincent van der Noort⁸, Jose G van den Berg¹, Ewart de Bruijn⁴, Jacobus JM van der Hoeven⁴, Hans van Snellenberg⁴, Lizet E van der Kolk⁹, Edwin Cuppen^{3,4,10}, Emile E Voest^{2,3,11}, Gemit A Meijer^{1,4} and Kim Monkhorst^{1,2}

Cancer of Unknown Primary

- algorithm development (database)
- proof-of-concept clinical value

Resolved diagnosis 67% Potentially actionable 50%

ORIGINAL RESEARCH

Complete genomic characterization in patients with cancer of unknown primary origin in routine diagnostics

L. J. Schipper^{1,21}, K. G. Samsom³¹, P. Snaebjornsson³, T. Battaglia³, L. J. W. Bosch³, F. Lalezari⁴, P. Priestley⁵, C. Shale⁵, A. J. van den Broek⁶, N. Jacobs⁶, P. Roepman⁶, J. J. M. van der Hoeven⁶, N. Steeghs⁷, M. A. Vollebergh⁸, S. Marchetti⁷ E. Cuppen^{6,45}, G. A. Meijer³, E. E. Voest^{1,2,6} & K. Monkhorst¹

Volume 7 ■ Issue 6 ■ 2022

2021: Use of WGS for routine diagnostics in NKI-AvL 2021: CUP is first reimbursement indication for WGS

Real-world evidence (n = 888) confirms study results

Routine use in a comprehensive cancer center (NKI-AvL 2021-2023)
Solid tumors, mostly metastatic

Clinical consequences of WGS-based diagnostics in 42% of patients plus identification of experimental therapy options in >50% of patients (mostly drug-repurposing)

Diagnostic use of WGS for oncology in the Netherlands

- Service level agreements for WGS-based diagnostics with ~30 out of 71 hospitals in The Netherlands
- Databasing agreement including **patient consent** (opt-in) with most
- Enabling WGS-based diagnostics for:
 - Routine all patients (comprehensive cancer center NKI-AvL)
 - Cancer of Unknown Primary in **guidelines** and reimbursed)
 - Last resort: Phase 1 unit (EMC)
 - Projects: GENAYA, OPTIC (CRC), GLOW (GBM) (all hospitals)

~1,100 patients per year (steadily growing)

June 24, 2025: Dutch health care authorities (ZIN) approved WGS reimbursement for all patients that are in sufficient conditions to undergo treatment

⇒ driven by pan-cancer treatments like NTRK inhibitors

Data reuse is enabled through Hartwig database

Developed with support from **WKWF** ▶ 885 patients **Primary Tumor Location** 139 patients Targeted therapy Treatment Type ▶ 60 patients **RNASeq Available** Request Access Export Data

Privacy Policy | Disclaimer | Contact Us

րիկովինին մինրիկնին իննին իննին իննին հինանին հայնինին հինանին հինանին հինակին հինանին ին

Includes clinical metadata: patient, tumor, treatment

~60% with matching RNA-seq

Access controlled

- Free
- Use for 'common good'
- Raw and analysed data
- Google cloud

Catalog

Request data

https://catalog.hartwigmedicalfoundation.nl https://www.hartwigmedicalfoundation.nl/en/data/data-access-request/

Cancer vignettes illustrate richness of data

Based on WiGiTs output

Available under CC-BY

- education
- statistical data mining

>80 cancer types

https://www.hartwigmedicalfoundation.nl/en/data/vignettes/

Robust GDPR-proof procedure for international data sharing

Data Access Procedure ensures that the 'Licensed Data' is only shared when:

- Countries guarantee strong data protection
- Academic institutes only (non-profit)
- Researchers with proven track record
- Data minimization perspective

All 'anonimized' data (raw and analyzed) is made available through GCP **cloud** (institutional authentication).

Downloads are possible; user is **contractually** bound for having the right **security** measures in place and is legally **liable** for misuse and data leaks (requires additional paperwork for non-EU countries)

Phase 1: Internal scientific and legal assessment Phase 2: (external) scientific assessment Phase 3: Data Access **Board** Phase 4: Final decision Phase 5: License agreement Phase 6: Sharing the data

Global data requests & impactful publications

Global useDPIA for non-EU countries required

Publications

Citations

https://www.hartwigmedicalfoundation.nl/en/data/research-and-science/datarequests/

Learning care system in action: (non) response biomarkers

Clinical utility?

Combining genomic biomarkers to guide immunotherapy in non-small cell lung cancer Van de Haar, Mankor, Clinical Cancer Research

Learning care system in action: (non) response biomarkers

Costs societal impact

- 20%, treatment could potentially be omitted*
- Treatment cost savings ~€ >1.5 M
- Screening all patients by WGS € < 0.5 M
- Net saving of € 1 M

^{*}Prospective study required

Can we do this systematically?

Interesting leads (many derived from RNA data) that make sense from a biological perspective But statistically underpowerd when applying multi-testing correction!

What will the future look like?

Expand WGS data resources by orders of magnitude

Image source: https://www.independentforlonger.com/economic-development-basics/global-partnerships/

International collaboration is key!!

- connecting similar resources world-wide
- global network based on coalition of the willing
- uniformly analyzed genomics data
- standardized clinical data
- trusted authentication and federated access mechanisms

Ongoing exploratory collaboration projects

- Genomics England (cross-validation)
- DKFZ/NCT Germany (rare cancers)
- UMCCR, Melbourne Australia
- 2025 France Genomic Medicine Plan (CUP)

- Expand WGS data resources by orders of magnitude
- Specific focus on rare cancers to address unmet needs

Source: https://www.cancervic.org.au/cancer-information/rare-and-less-common-cancers/overview.html

Combined patient counts for Hartwig, GEL and NCT Master

Merging resources today already boosts abilities

- Expand WGS data resources by orders of magnitude
- Specific focus on rare cancers to address unmet needs
- Extend characterization with multi-omics approaches

- Expand WGS data resources by orders of magnitude
- Specific focus on rare cancers to address unmet needs
- Extend characterization with multi-omics approaches
- Integrate multimodal data sources
 - imaging, histopathology, etc (EHDS)
 - model systems, (patient-derived) cell lines, organoids

Source: Nature Reviews Cancer volume 22, pages114–126 (2022)

- Expand WGS data resources by orders of magnitude
- Specific focus on rare cancers to address unmet needs
- Extend characterization with multi-omics approaches
- Integrate multimodal data sources
- Capitalize on AI developments to discover relevant patterns and biomarkers

Image source: https://www.elucidata.io/blog/cancer-research-in-the-age-of-ai-the-next-frontier

Why aren't we massively implementing cancer WGS?

1) high quality WGS for care AND research requires high quality tissue input

DNA sequencing and FFPE are not friends!

Technically easy to mitigate, but culturally very challenging

- Radiology: collect 4 biopsies: almost always possible
- Biopsy evaluation in central sectioning room:
 - Diagnostic request: best biopsy for FFPE; rest for FF (or RNAlater)
 - Molecular request: all biopsies for FF (or RNAlater)
- PrestoChill: rapid freezing followed by sectioning, microscopic evaluation, and macrodissection of tumor-containing part of biopsy for DNA/RNA isolation

Transformation to non-FFPE (FF or RNA-later) also needed for maximizing potential of **other emerging technologies**, like single cell, proteomics, functional screens, organoids

nature protocols

https://doi.org/10.1038/s41596-023-00933-5

Protoco

Check for updates

Optimized whole-genome sequencing workflow for tumor diagnostics in routine pathology practice

Kris G. Samsom¹¹, Linda J. W. Bosch¹³, Luuk J. Schipper^{2,5}, Daoin Schourt, Paul Roepman⁴, Mirjam C. Boelens¹, Ferry Lalezari², Elisabeth G. Klompenhouwer⁵, Adrianus J. de Langen⁶, Tineke E. Buffart⁷, Berit M. H. van Linder¹, Kelly van Deventer¹, Kay van den Burg¹, Unga Unmehopa¹, Efraim H. Rosenberg ⁶), Roelof Koster ⁶0¹, Frans B. L. Hogervorst¹, José G. van den Berg¹, Immy Riethorst⁴, Lieke Schoenmaker⁴, Daphne van Beek⁴, Ewart de Bruijn⁴, Jacobus J. M. van der Hoeven¹, Hans van Snellenberg⁴, Lizet E. van der Kolk⁶, Edwin Cuppen ⁶0^{3,49}, Emile E. Voest ⁶0^{2,310}, Gerrit A. Mellier ⁶0¹⁰ & Kim Monkhorst¹

ature Protocols | Volume 19 | March 2024 | 700-72

Why aren't we massively implementing cancer WGS?

1) high quality WGS for care AND research requires high quality tissue input non-FFPE (FF or RNA-later)

2) panel NGS is cheaper than WGS

WGS: 2,000 – 3,000 Euro/Dollar

Large panel like TSO500: 750 – 1,000 Euro/Dollar

But is this really true?

Non-small cell lung cancer (NSCLC; n=711 patients)

Highest evidence level treatment option identified by test strategy

Average number of identified potentially actionable events identified by test strategy

Top missed events by Comprehensive Panel vs WGS

Fusion gene detection requires an additional assay on top of standard comprehensive panel

So does Homologous Recombination Deficiency (HRD) detection

Sequencing: reagents main determinant of test costs

^{*} based on 4 genome equivalents (tumor-normal pairs, 90x vs 30x)

ուլիլույի արկարի Կոնիայի հիւրդիրան Կոնիայի հուրդիրան արկարի հիւրանի հուրանի հիւրանի հ

Micro-costing diagnostics in oncology: from singlegene testing to whole- genome sequencing

Clémence T. B. Pasmans, Bastiaan B. J. Tops, Elisabeth M. P. Steeghs, Veerle M. H. Coupé, Katrien Grünberg, Eiko K de Jong, Ed M. D. Schuuring, Stefan M. Willems, Marjolijn J. l. Ligtenberg, Valesca P. Retèl, Hans van Snellenberg, Ewart de Bruijn, Edwin Cuppen & Geert W. J. Frederix

^{**} update numbers for 2022, calculated as described in Pasmans et al., Expert Rev Pharmacoecon Outcomes Res (2021) Jun;21(3):413-414.

Sequencing: reagents main determinant of test costs

Comprehensive panel (e.g. TSO500)

+ Fusion gene detection (e.g. Archer)

^{**} update numbers for 2022, calculated as described in Pasmans et al., Expert Rev Pharmacoecon Outcomes Res (2021) Jun;21(3):413-414.

^{*} based on 4 genome equivalents (tumor-normal pairs, 90x vs 30x)

2) Technological innovations: Cheaper and faster short-read WGS

Sources: NIH Genome Sequencing Program, Illumina press releases, Ultima Genomics announcements, Roche investor presentations

2) Technological innovations: Cheaper and faster short-read WGS

illumına

Illumina NovaSeq6000/X+ Next generation SBS Reagent cost reduction ~50%

\$250 genome on 25B chip

Ultima Genomics UG100
Flow-based sequencing on wafers
Installed at Hartwig early 2024

\$80-100 genome Highly sensitive ctDNA detection using ppmSeq

Roche Axelios (prototype)
Nanopore sequencing by expansion (SBX)
Alpha testing at Hartwig early 2025
Commercial launch summer 2026
\$??
4 hour run time

- Hartwig WiGiTS data analysis tools are being made compatible for all three platforms
- Preliminary conclusions: all platforms are suited for WGS-based cancer diagnostics

3) Software as a Service for data analysis, annotation and interpretation

Hospitals often lack IT infrastructure and expertise to handle, analyse and interpret WGS data

Data portal

Data processing

Reporting

Software as a Service

- Authenticated login (hospital-controlled)
- Upload data from sequencer
- Sample overview
- Interactive reports
- Download data
- Powered by Hartwig WiGiTS
- Sequencing platform agnostic
- Tumor/normal WGS, Tumor-only WGS, panel

րիկովինին մինրիկնին իրանի անին արկանին իրանին անհանին արկանին հեն արկանին հեն մին անհանին

- CE-IVD approved OncoAct
- Empowered by Hartwig database

4) Improving data-driven cancer decision support systems

4) Improving data-driven cancer decision support systems

4) Improving data-driven cancer decision support systems

Hartwig OncoActin (under development)

Standard of care options considered potentially eligible

Treatment	Literature efficacy evidence	Real-world efficacy evidence	Warnings
FOLFOXIRI-B	TRIBE2		
	PFS: 12.0 months (95% CI: 11.1-12.9)	PFS: 8.8 months, IQR: 5.4	
	OS: 27.4 months (95% CI: 23.7-30.0)	OS: 17.6 months, IQR: 21.3	
PEMBROLIZUMAB	KEYNOTE-177		MSI status undetermined
	PFS: 16.5 months (95% CI: 5.2-32.4)	PFS: 8.3 months, IQR: 13.2	
	OS: NA	OS: NaN months	
FOLFOX-B	TRIBE2		
	PFS: 9.8 months (95% CI: 9.0-10.5)	PFS: 7.2 months, IQR: 6.4	
	OS: 22.5 months (95% CI: 20.7-24.8)	OS: 13.8 months, IQR: 16.5	

Expected outcomes

- Clinical Trial
- Real World Data
- Patients-like-me

Erasmus MC trials that are open and potentially eligible (2 cohorts from 2 trials)

Trial Cohort Warnings Molecular **Better trial matching** MEC 16-758 Talazoparib ATM c.5762G>A Inactivation event(s) ATM c.5762G>A splice for ATM but event(s) are Inclusion/Exclusion criteria splice not biallelic Automated data collection from EHR (Phase 2) Local and (inter)national MEC 23-0391 Part 2 Dose expansion Cohort D: No head and neck cancer, kidney cancer, liver cancer, lung non-small SAR445877 Infiltrated "hot" tumors cell carcinoma, melanoma or urinary bladder cancer Better context (Phase 1/2)

րիկովինին մինրիկնին իրանինին անություն անին անկանին անհանին անականին անականին աննական հանական հա

5) Improving therapy and disease progression monitoring

Tumor-informed (WGS) ctDNA monitoring

Paired-plus minus sequencing (ppmSeqTM) on **Ultima UG100**

- Very low raw read error rate phred 50-60
- average 7x coverage per 1ng input
- > 30x WGS coverage with 1 blood tube

1-size-fits-all test

- WGS diagnostics required
- Presence of sufficient somatic mutations
- Ultrasensitive detection limit of 0.001-0.01%

Image source: Journal of Human Genetics volume 66, 909–926 (2021)

Pilot study – retrospective longitudinal sampling in NSCLC

Collaboration with NKI

WGS-based diagnostics already routine care

Retrospective study cohort

- 10 metastatic NSCLC patients
- 192 plasma samples

ctDNA detection

- >=30X coverage on Ultima UG100
- Data analysis using WISP tool (part of Hartwig WiGiTS)

Results

- 190 out of 192 successful processed
- Lowest ctDNA fraction detected was 43ppm

Noe, Monkhorst, van der Pol, unpublished data

Case study patient 1

- ~14 000 somatic variants in tissue
- ctDNA tumor fraction never decreased, similar to what was observed in the clinical data
- 2x increase between June-August 2021 prior to progression detected in September 2021

Case study patient 2

- ~16 500 somatic variants in tissue
- High ctDNA tumor fraction at times (43%)
- ctDNA tumor fraction increase prior to progression

Noe, Monkhorst, van der Pol, unpublished data

Routine WGS-based cancer diagnostics

- Is feasible
- Has value for todays patient care
- Is getting cheaper with emerging technologies
- Enables versatile disease monitoring

Data reuse

- Is feasible, including international data sharing
- Enables scientific and biomarker discovery
- Improves tomorrows patient care
- Contributes to health care system sustainability
- Is boosted by international collaboration

Acknowledgements

All patients and families

Hartwig NL – AUS – CAN – ES

NKI-AvL

Kim Monkhorst

Petur Snaebjornsson

Michael Noe

Linda Bosch

Luuk Schipper

Kris Samsom

Gerrit Meijer

Joris vd Haar

Emile Voest

The right treatment for each cancer patient

A Science Park 408 - 1098 XH Amsterdam - Nederland

T 020 2269 700 E info@hartwigmedicalfoundation.nl

w hartwigmedicalfoundation.nl